If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1986x-32032=0
a = 1; b = 1986; c = -32032;
Δ = b2-4ac
Δ = 19862-4·1·(-32032)
Δ = 4072324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4072324}=2018$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1986)-2018}{2*1}=\frac{-4004}{2} =-2002 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1986)+2018}{2*1}=\frac{32}{2} =16 $
| 59-17=2v+4v | | -7(-6p-6p)+3=129 | | j−7=-6j+7 | | 5x+5=-2(-2x-4) | | 6t=5t+2 | | {3/4}x+6=30 | | 52-22=4b+2b | | 1p+2=-14 | | x(3/7)+4=16 | | 4.5-7.2x=3.4x-4.5 | | -7w-45=9w+3 | | 10p-3=4p | | (3/7)x+4=16 | | -22+2x=6(2x+8) | | 2v+4-3(-6v-2)=2(v-1 | | -2(x-1)+4=3(x+1) | | 4a-4+8=36 | | 8w-6w=-10+16 | | 224=8(4v+8) | | 7x+4=3x-44 | | -3.46(t-18)=3.46 | | 0.85x=595 | | 63-m=10 | | 1.1t-0.93t=49.98 | | 5(-8k+3)-3=5(3-8k) | | 8(u-86)=80 | | -152=-2+6(5=5n) | | 3v+6v=-16-56 | | 3k+2=28 | | 2(j-55)=76 | | 9(n-1)=6(3n+9) | | 2(j−55)=76 |